算法分析
数学模型
近似
N3/6-N2/2+N/3 ~ N3/6。使用 ~f(N) 来表示所有随着 N 的增大除以 f(N) 的结果趋近于 1 的函数。
增长数量级
N3/6-N2/2+N/3 的增长数量级为 O(N3)。增长数量级将算法与它的具体实现隔离开来,一个算法的增长数量级为 O(N3) 与它是否用 Java 实现,是否运行于特定计算机上无关。
内循环
执行最频繁的指令决定了程序执行的总时间,把这些指令称为程序的内循环。
成本模型
使用成本模型来评估算法,例如数组的访问次数就是一种成本模型。
注意事项
大常数
在求近似时,如果低级项的常数系数很大,那么近似的结果是错误的。
缓存
计算机系统会使用缓存技术来组织内存,访问数组相邻的元素会比访问不相邻的元素快很多。
对最坏情况下的性能的保证
在核反应堆、心脏起搏器或者刹车控制器中的软件,最坏情况下的性能是十分重要的。
随机化算法
通过打乱输入,去除算法对输入的依赖。
均摊分析
将所有操作的总成本除于操作总数来将成本均摊。例如对一个空栈进行 N 次连续的 push() 调用需要访问数组的次数为 N+4+8+16+...+2N=5N-4(N 是向数组写入元素的次数,其余都是调整数组大小时进行复制需要的访问数组次数),均摊后访问数组的平均次数为常数
ThreeSum
ThreeSum 用于统计一个数组中和为 0 的三元组数量
public interface ThreeSum {
int count(int[] nums);
}
ThreeSumSlow
该算法的内循环为 if (nums[i] + nums[j] + nums[k] == 0) 语句,总共执行的次数为 N(N-1)(N-2) = N3/6-N2/2+N/3,因此它的近似执行次数为 ~N3/6,增长数量级为 O(N3)。
javapublic class ThreeSumSlow implements ThreeSum { @Override public int count(int[] nums) { int N = nums.length; int cnt = 0; for (int i = 0; i < N; i++) { for (int j = i + 1; j < N; j++) { for (int k = j + 1; k < N; k++) { if (nums[i] + nums[j] + nums[k] == 0) { cnt++; } } } } return cnt; } }
ThreeSumBinarySearch
将数组进行排序,对两个元素求和,并用二分查找方法查找是否存在该和的相反数,如果存在,就说明存在和为 0 的三元组。
应该注意的是,只有数组不含有相同元素才能使用这种解法,否则二分查找的结果会出错。
该方法可以将 ThreeSum 算法增长数量级降低为 O(N2logN)。
javapublic class ThreeSumBinarySearch implements ThreeSum { @Override public int count(int[] nums) { Arrays.sort(nums); int N = nums.length; int cnt = 0; for (int i = 0; i < N; i++) { for (int j = i + 1; j < N; j++) { int target = -nums[i] - nums[j]; int index = BinarySearch.search(nums, target); // 应该注意这里的下标必须大于 j,否则会重复统计。 if (index > j) { cnt++; } } } return cnt; } } public class BinarySearch { public static int search(int[] nums, int target) { int l = 0, h = nums.length - 1; while (l <= h) { int m = l + (h - l) / 2; if (target == nums[m]) { return m; } else if (target > nums[m]) { l = m + 1; } else { h = m - 1; } } return -1; } }
ThreeSumTwoPointer
更有效的方法是先将数组排序,然后使用双指针进行查找,时间复杂度为 O(N2)。
同样不适用与数组存在重复元素的情况。
public class ThreeSumTwoPointer implements ThreeSum {
@Override
public int count(int[] nums) {
int N = nums.length;
int cnt = 0;
Arrays.sort(nums);
for (int i = 0; i < N - 2; i++) {
int l = i + 1, h = N - 1, target = -nums[i];
while (l < h) {
int sum = nums[l] + nums[h];
if (sum == target) {
cnt++;
l++;
h--;
} else if (sum < target) {
l++;
} else {
h--;
}
}
}
return cnt;
}
}